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An experimental and theoretical study is made of a suddenly separating and 
reattaching two-dimensional turbulent boundary layer on a flat surface. A separa- 
tion bubble is formed on the floor of a wide parallel-sided wind-tunnel duct with 
the pressure field causing the bubble formation produced by fixing the shape of 
the flexible roof of the duct. Boundary layers on the roof are controlled and 
remain attached. It is found that a very satisfactory model for the flow is an 
inviscid one. 

The boundary layer on the floor of the duct is represented by a region of 
constant vorticity with slip at  the boundary, and it is assumed that the separation 
process is dominated by the interaction between this ‘vortical’ region and the 
irrotational field between the vortical region and the roof (of prescribed shape). 
The interface between the rotational and irrotational regions is a free boundary 
and may be located when all necessary boundary conditions are given. These con- 
ditions include two characteristic parameters for the adverse-pressure-gradient 
turbulent boundary layer which is developing upstream of the region of interest. 

The problem is solved by an electrical analog method. The theoretical size and 
shape of the bubble and positions of separation and reattachment are in agreement 
with observations. The advantage of the model over most previous attempts to 
predict separation is that the governing equations are elliptic rather than para- 
bolic or hyperbolic and therefore the interaction between the boundary-layer 
flow and the irrotational free stream is included in the calculations. 

1. Introduction 
Calculation methods for turbulent boundary layers are invariably based on the 

classical approach. That is, the boundary-layer approximations together with 
some closure hypothesis are used in conjunction with a prescribed surface 
pressure distribution. Some of these methods have been surprisingly successful 
in predicting the flow near the separation point. However, it  has been felt by 
many authorities (e.g. see Nine et al. 1968) that these methods must break down 
in the region close to and beyond separation for the following reasons. First, the 
use of the boundary-layer equations destroys the elliptic nature of the Navier- 

t Present address : Aeronautical Research Laboratories, Fisherman’s Bend, Victoria, 
Australia. 
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FIGURE 1. Mean-velocity profiles plotted on defect-law axes of Perry & Schofield (1973). 
-, constant-vorticity approximation. 

Stokes equations, thus excluding any interaction between the boundary layer 
and the irrotational free stream. In the separation region, the boundary-layer 
approximations break down and the usual step-by-step calculation procedure 
(valid for the parabolic or hyperbolic boundary-layer equations) must be replaced 
by one which takes into account all boundary conditions, both upstream and 
downstream. Second, the interaction between the boundary layer and the free 
stream precludes the prescription of the surface pressure distribution a priori in 
the region close to and beyond the separation point. Thus the classical approach 
appears to be inadequate for calculating the flow in regions of separation. 

The authors have therefore attempted to develop a model for turbulent 
boundary-layer separation and reattachment for the region where the boundary- 
layer approximations are invalid and where the surface pressure distribution 
is not known a priori. The case considered here is that in which an adverse- 
pressure-gradient boundary layer is forced suddenly to separate and then 
reattach. To provide reliable data against which this model could be tested, an 
experimental programme was carried out concurrently. 

The model adopted here is similar to that suggested by Kuchemann (1967) and 
Smith (1970) (for the trailing edge of an aerofoil) and Taulbee & Robertson (1972) 
(for flow upstream of a forward-facing step). The authors propose that the 
turbulent layer may be represented by an inviscid rotational region of constant 
vorticity with slip a t  the wall. Some confirmation of this representation is 
provided by the work of Perry & Schofield (1973). They calculated Reynolds- 
stress gradients for all the adverse-pressure-gradient layers examined at  the 
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FIGURE 2.  Summary of boundary conditions. 

Stanford Prediction Conference (Kline et al. 1968; Coles & Hirst 1968) and found 
that, in the latter stages of development, pressure-gradient and inertia forces 
were dominant in the outer 80 % of the layers. Shear-stress gradients were almost 
two orders smaller. Thus an inviscid rotational model would appear to be 
plausible, particularly when the separation or reattachment occurs suddenly 
and is well defined. Perry & Schofield also found that such adverse-pressure- 
gradient layers have linear velocj ty  distributions prior to separation, providing 
justification for the constant-vorticity approximation. This is illustrated in 
figure 1, the notation for which is explained later ( 5  3.3). For the inner region of 
the boundary layer (also indicated in figure l), where gradients of shear stress 
become significant, various approximations have been used in the past. For 
example, Stratford (1959) and Townsend (1960) used an inviscid rotational 
representation for the outer region of the layer and attempted, with some success, 
to match it to various forms of inner-layer representation. The approach of the 
present authors is to replace the inner region of the boundary layer by a vortex 
sheet (i.e. slip at  the boundary), assuming the effect of the inner flow on the 
separation process to be dominated by the interaction of the rotational outer 
flow in the boundary layer with the irrotational external stream. 

2. Details of model 
As a first approximation, the thickening of the vortica.1 region due to entrain- 

ment will be neglected. Therefore the proposed separation model is governed by 
the two-dimensional inviscid Helmholtz equation 

D(V2@)/Dt = 0, (1) 

where @ is the stream function. The flow will be divided into two regions (see 
figure 2 ) .  

(I) An irrotational external stream, where for steady flow (1) reduces to 
Laplace's equation 

( 2 )  

(11) A vortical layer in which the vorticity is constant throughout with finite 
slip at  the wall. This region separates region I from the wall. It is the rotational 
part of the flow, including the whole boundary layer and (when there is one) the 

V2@ = 0. 
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separation bubble and the separated shear layer bounding it. In  the steady state, 
(1) will reduce to Poisson's equation 

(3) 
where o is the value of the (constant) vorticity of the approaching upstream 
boundary layer. 

It should be noted that the governing equations are elliptic in nature, requiring 
the specification of all boundary conditions. The interface between regions I and 
I1 must be a streamline satisfying (1) and t'he velocity across it must be 
cont.inuous. 

V2$ = f ( $ )  = - W ,  

3. Boundary conditions 
3.1. Upstream bozmdary conditions 

These boundary conditions are concerned with the initial velocity profile of the 
layer and its thickness. Various velocity-profile models are available, e.g. see 
Coles (1956) or Sandborn (1959). The present work uses a defect distribution 
based on the similarity proposal of Perry & Schofield (1973) because of its 
simplicity and convenience : it  requires the least possible number of parameters 
to specify the profile shape. This proposal has been found to represent successfully 
all adverse-pressure-gradient velocity profiles in layers approaching separation 
for which the maximum shear stress is larger than about 1.5 times the wall shear 
stress at a given station. Let u be the x component of velocity at a distance y from 
the wall and let U, be the velocity just outside the boundary layer, A velocity 
scale V,  and a length scale A can be found which collapse the data in the defect 
form shown in figure 1. In  fact, this is how the scales V, and A are defined. It will 
be shown later that V, and A can be calculated from extremely simple relations 
once the displacement thickness 6" and the form factor H (=  a*/@ are known. 
Here 6 is the momentum thickness. These latter quantities can be determined 
from experiment or may be predicted by any suitable calculation scheme valid 
for the region upstream of the separation zone. In  figure 1,  T and S are universal 
constants associated with the straight-line approximation shown. U' is the 
extrapolated velocity defect at the wall and e is the value of y which corresponds 
to the outer edge of the vortical layer, i.e. the layer of constant vorticity to be 
used as an approximation to the actual boundary layer at  this upstream position. 

Here the boundary-layer approximations are assumed to remain valid and 
hence as far as the electrical analog method ( 9  4) is concerned the flow remains 
essentially parallel to the floor at this upstream station. Introduction of a small 
divergence at this position was found to have a very small influence on the 
calculated streamline pattern downstream. The distribution of the dimensionless 
stream function through the vortical layer upstream is then given by 

u,-u 
U, 

?& = RYZ+- D Y ,  O < Y < E ,  (4) 

where E = e/L and Y = y /L .  Also 
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Uo is an upstream reference velocity and L is an arbitrary length scale to be 
defined in 3.3. 

The distribution of the stream function in the free stream then becomes 

At this upstream station the free-stream velocity is taken to be U, and is invariant 
with y. 

If t$ and A are known, then E,  R and t& may be found from 

where T and S are the universal constants defined in figure 1 .  It remains to 
determine T and S such that the constant-vorticity approximation matches the 
experimental data. The matching conditions were chosen such that the approxi- 
mate and experimental velocity profiles have the same displacement thickness 
and that the value $E of the stream function a t  the edge of the vortical layer 
( Y  = E )  is the same in both cases. The appropriate values were found to be 
S = 0.805 and T = 0.868. 

From the proposal of Perry & Schofield (1973) equations similar to those of 
Clauser (1956)i  may be derived (ignoring the thin logarithmic region close 
to the boundary). These are 

H = (1 - Go-', A = S*/N[.  (9), (10) 

Here 5 = l</Ch and G and N are universal constants with values 0.58 and 2.86 
respectively. Thus given 6" and H from experiment, A and Us are known and 
hence the constant,s in (4) and (7 )  can be evaluated. 

3.2. Downstream boundary conditions 
Since vorticity is conserved along streamlines it follotvs that the distribution of $ 
downstream can be found from a knowledge of the upstream boundary conditions 
and the continuity equation. I n  the present case it is assumed that the down- 
stream boundary is located such that the flow is once again parallel, i.e. a$/ax = 0. 
In fact the experiment was deliberately arranged to achieve closely this condition. 

3.3. Other boundary conditions 
All the boundary conditions are shown in figure 2. The upper boundary corre- 
sponds to  the roof (the upper boundary layers being thin) and $ is arbitrarily 
taken t,o be unity there, thus fixing the value of L in (4). 

In  the separated region, streamlines are closed and therefore do not originate 
from upstream. Therefore the vorticity there may differ from the constant 

t The only differences from the Clauser relations are that U, is not directly related to the 
wall shear velocity and the above equations appear to be valid for both equilibrium and 
non-equilibrium layers. 
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value w .  There is very little theoretical or experimental guidance as to the 
appropriate value. Taulbee & Robertson (1 972) considered a varying-vorticity 
model and assumed a vorticity excess in the separabed region upstream of their 
step. The work of Batchelor (1956) suggests that, a t  least for closed laminar 
separation bubbles, the vorticity should be constant within the bubble, its 
value being determined by the boundary conditions. The present experiment 
indicates a deficiency of vorticity here but in the model the vorticity is assumed 
to have the same constant value o as in the rest of the vortical region. It is 
conjectured that the resulting solution is insensitive to  the value of the vorticity 
close to the centre of the bubble, since by Stokes’ theorem the contribution to 
the circulation about the closed streamline $ = 0 is weighted more heavily by 
the vorticity in the peripheral regions of the bubble. 

4. Method of solution of governing equations 
The complexity of the problem precludes an analytic solution. Numerical 

solutions are possible in principle (e.g. Smith 1970). However, here an electrical 
analog technique employing the familiar resistance-paper method was used. The 
solution of Laplace’s equation using steady currents is well known. However, 
the solution of Poisson’s equation requires distributed capacitance and so a.c. 
voltages are applied as described by Swannell (1963) and Fairlie (1973). The 
physical circuit is shown in figure 3. The areas of distributed capacitance are 
provided by applying conducting paint to a sheet of acetate bonded to the back 
of the resistance paper. The solution of the governing equations then proceeds as 
follows. The upper and lower boundaries are defined by painting the surface of 
the resistance paper with conducting paint. The upstream and downstream 
boundaries are defined by the edges of the resistance paper, which must be cut 
suitably. Streamlines will be normal to these edges. The solution to Laplace’s 
equation throughout the region is then obtained by applying an a.c. voltage 
between the upper and lower boundaries and tracing lines of constant a x .  voltage 
(streamlines) with a copper probe and voltmeter. The Laplace streamline passing 
through the (known) upper limit of the vortical region at the upstream boundary 
is then taken as a first approximation to the limit of the vortical region (the 
dividing streamline) and the area between this streamline and the lower 
boundary is provided with distributed capacitance by the application of 
conducting paint to the acetate backing sheet. 

(see figure 3) are applied and adjusted to obtain the 
correct external boundary conditions. A second approximation t o  the dividing 
streamline is obtained by tracing the new streamline beginning a t  the upstream 
upper limit of the vortical region and the area of distributed capacitance is then 
modified accordingly. This process is then repeated until two successive approxi- 
mations to the dividing streamline coincide. This iterative process has been found 
to converge surprisingly quickly in practice (2-3 iterations for rough calculations 
or 7-10 iterations for greater accuracy) and in most cases moiiotonically. The 
complete streamline pattern may be obtained. 

The electrical analog is thus able to provide quick and accurate solutions of the 

The voltages V and 
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1 

FIGURE 3. Arrangement of electrical analog. I' >> 9. 

governing equations. At the present stage of development, the method suffers 
from the minor limitation that the vorticity must be constant throughout the 
vortical region. 

5. Experimental investigation 
5.1. E x p e r ~ m e ~ ~ ~ a l  appurcctus and bounda~y-ku~er controk 

All the experimental work was carried out in a low-speed open-return wind tunnel 
a t  the University of Melbourne. The working section of this tunnel is of rectangular 
cross-section 110 x 610 mm a t  the inlet and 2.5 m long with a specially constructed 
flexible roof, allowing any desired streamwise pressure gradient to be attained. 
The floor of the working section consists of highly polished plywood (supported 
on aluminium channels) pressure tapped at 2.5 ern intervals along its centre-line. 

The shape of the flexible roof was adjusted to obtain an adverse-pressure- 
gradient boundary layer upstream of the desired position of separation. The roof 
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FIGURE 4. Arrangement of false roof. Duct width = 6lOmm. 

then diverged suddenly to produce a definite position for the separation Iine 
and subsequently converged to produce reattachment. As was expected the 
boundary layer on the roof initially separated, that on the floor remaining 
attached. Several types of boundary-layer control were tried on the roof but 
with only moderate success; the floor layer, although separating, showed marked 
three-dimensionality. After many fruitless attempts the arrangement shown in 
figure 4 was found to produce an acceptably two-dimensional separation bubble 
on the floor. This arrangement consisted of a false roof mounted below the 
flexible roof which provided a starting point for a new roof boundary layer. The 
old roof layer was completely removed through the passage between the false and 
flexible roofs. This passage was arranged to be continuously converging, thus 
avoiding separation within it. The separation line thus obtained was essentially 
straight over the majority of the duct width and was symmetrical about its 
centre-line. It was found that, by varying the position of the trailing edge of t'he 
false roof, the size of the separation bubble could be varied while still retaining 
its approximate two-dimensionality. Distributions of the pressure coefficient for 
the two cases studied are shown in figures 7 (a )  and ( b )  below. 

5.2 .  Experimental procedure 

Two separated flows were investigated. The first case provided a large separation 
bubble, enabling detailed measurements to be undertaken inside the bubble. In 
the second case no discernible bubble could be found although tuft-probe 
investigations indicated patches of transitory stall, shown in figure 6 (c). This 
case was designed to provide a second example against which the separation 
model could be tested. 

Velocity traverses were carried out normal to the plate on the duct cent're-line 
throughout the developing boundary layer and, for the first case, throughout the 
separation bubble. In  regions upstream of separation where flow divergence 
remained insignificant a flattened total pressure probe was used, static pressure 
variations through the profiles being found to be negligible. In  regions of signi- 
ficant flow divergence a twin hot-wire probe described by Fairlie (1973) was 
used to obtain mean-velocity and flow-angle profiles. Flow angles were obtained 
with this probe by traversing a temperature-sensitive wire through the wake of 
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c;t H 6" (mm) E 
Case 1. Reynolds number = 1.25 x 106m-l 

0.150 0.0034 0.55 1.44 2.30 
0.300 0.0029 0.95 1-47 3.47 18.8 0.53 
0.450 0.0025 1.25 1-51 4-67 23.1 0.58 
0.600 0.0021 1.70 1.57 6.55 29.8 0.63 
0.750 0.0017 2.40 1.65 9.01 38-0 0.68 
0.900 0.00 11 4.15 1.85 13.43 48.0 0.80 

- - 

Case 2. Reynolds number = 1.9 x 10'jm-l 

0.450 0.0024 1.3 1.49 3.96 19.9 0.57 
0.600 0-002 1 1.7 1.53 5.28 24.8 0.61 
0.750 0.0018 2.1 1.60 7.28 31.6 0.66 
0.900 0.0015 3.1 1.65 9.68 40.1 0.69 
1.000 0.0012 3.7 1.73 13.90 53.4 . 0.75 
1.090 0.0004 10.3 2.24 22.06 63.1 1.00 

f C; = local skin-friction coefficient as determined from a ' Clauser chart '. 

TABLE 1 

an upstream velocity-sensitive wire. In spite of flow reversals and nonlinearities, 
analysis showed that mean velocities and flow angles could be obtained with 
reasonable accuracy. Throughout these tests the upstream reference veIocity was 
adjusted to maintain a constant Reynolds number (1.25 x lo6 m-l for case I and 
1-9 x 1O6rn-l for case 2). 

6. Data reduction and results 
6. I .  Mean $ow field 

All velocity profiles from the upstream developing boundary layer were tested 
against the 'law of the wall' and 'law of the wake' in the normal way. See Coles 
(1956). The good agreement found for both cases confirmed that the upstream 
layers were typical adverse-pressure-gradient turbulent boundary layers. 

Mean-velocity profiles prior to separation may be reconstructed by the reader 
from the data7 given in table 1, which gives the values of the Coles wake factor 
n,, a*, H ,  etc. The correlation of the data according to the defect-law form 
mentioned earlier is shown in figure 1 and again good agreement is seen. 

From an empirical curve fit profiles of 

u, - u -- - 1-0 - 0*4(y/A)+ - 0.6 sin 
u, 

may also be reconstructed. However, these give no information concerning the 
thin logarithmic region since in the Perry & Schofield model, skin friction is 
regarded as an irrelevant parameter for these low skin-friction layers. 

t A complete set of experimental data will be made available by the authors on 
request. 
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FIGURE 6. Velocity vector field for case 1 obtained from experiment. 

The profiles of flow angle and mean velocity through t,he separated region were 
expressed in the form 

where q is the magnitude and p the angle relative to the floor of the mean stream- 
wise velocity at any point. The value of the dimensionless stream function 

was then obtained by numerical integration. The value of L was adjusted such 
t,liat the streamline coincident with the upper boundary corresponded to the 
value $ = 1. From a plot of $ against y / L ,  points of equal @ and hence stream- 
lines were obtained. 

Figure 5 shows the experimental velocity field obtained for case 1. It should be 
pointed out how difficult it  is to calculate the vorticity from such data, particularly 
close to separation and reattachment. Not only is the component au/ag important, 
but so also is -av/ax, v being the component of velocity in the y direction. An 
interesting point about figure 5 is that the velocity profiles in the boundary layer 
do not develop an inflexion point until an appreciable v component has developed. 
It can be seen from figure 5 that at about x = 1-10 m an appreciable discrepancy 
develops between the measured flow angles p and the sbreamline directions 
deduced from (12) and (13). Two possible reasons for this are (a )  nonlinear effects 
in the measuring probe mentioned earlier and ( b )  three-dimensional effects. The 
deduced st,reamline directions were adopted as the correct directions since they 
appeared to be more consistent with the measured positions of the points S and 0. 
Also, in regions where velocities were very low, mean velocities would have been 
overestimated owing to the presence of large velocity fluctuations. The broken 
lines shown on the profiles of figure 5 illustrate how the velocity vectors 'bend 
back ' on themselves owing to the changing streamline direction. Flow angles were 
not measured for case 2 since they were found by cursory checks to be small. 

The experimental streamline patterns obtained for both cases are shown in 
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FIGURE 6. Streamline patterns for ( a )  case 1, experiment; ( b )  case 1, analog solut,ion; 
(c) case 2, experiment; ( d )  case 3 ,  analog solution. 

figures 6 (a)  and (c). Velocity profiles were not calculated using the model since it 
predicts stream functions. To extract velocities from the model would require 
differentiation of the stream function- a very inaccurate process. I n  any case, 
the authors do not feel that the model is sufficiently accurate to calculate detailed 
velocity distributions, since the neglect of entrainment and the diffusion of 
vorticity is rather severe. However, as will be seen, the gross features of the flow 
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FIGURE 7. Surface pressure distributions. ( a )  Case 1. ( b )  Case 2. ( c )  Detail in separated region 
of case 1 showing osculating parabolae. c, = ( P -  Pz=o)/*p(Ul):=o. (After Perry & Fairlie 
1974.) 
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patterns are predicted reasonably well. I n  figure 6 (b)  a comparison between the 
$ = 0 streamlines and the $ = $E streamlines from theory and experiment is 
shown. The close agreement between the streamlines shows that the overall 
displacement effects of the experimental and theoretical bubbles are close. 

Perry & Fairlie (1974) have shown that if the constant-vorticity representation 
is valid for a turbulent boundary layer close to separation then the separation or 
reattachment angle a will be given by 

tan a = 2( - P,,)t/w, (14) 

where P,, is the second derivative of the (kinematic) pressure a t  the separation or 
reattachment point. They also found that the pressure will be a maximum a t  a 
point of separation or reattachment and hence the pressure distribution will be 
parabolic in these regions. The detailed pressure distribution in the separated 
region of case 1 is shown in figure 7 (c) and pressure maxima are seen to coincide 
with the separation and reattachment points. The theoretical parabolic distribu- 
tions shown were determined from (14) using the separation and reattachment 
angles measured from the experimental streamline pattern. The value of the 
vorticity adopted was calculated from the upstream profile. The general agree- 
ment found, although not precise, is encouraging considering the inaccuracies 
involved in a and w .  

Detailed observations of the flow for case 1 were made using tufts, smoke and 
glass spheres 15pm in diameter as surface flow tracers. (The velocities in the 
separated region were far too low to allow the use of the usual surface oil flow 
techniques.) These observations were combined with the mathematical principles 
proposed by Lighthill (1963) and Oswatitsch (1958) and recently extended by 
Perry & Fairlie (1974) to produce the surface and ‘separation surface’ flow 
patterns shown in figure 8. The flow patterns shown for the wall/floor corners, 
although consistent mathematically and in agreement with observation, are 
thought to be somewhat oversimplified. Corner eddies would considerably com- 
plicate the small-scale structure. 

7. Comparisons of model with experiment 
The values of 5 and A calculated from the upstream velocity profiles were used 

to calculate the thickness and vorticity of the vortical layer a t  the upstream 
boundary of the model. The location of the upstream boundary was chosen far 
enough upstream of the separation point t o  minimize any interaction. This was 
later checked during the solution of the model equations using the electrical 
analog. The upper boundary was chosen for the first case to coincide with the 
experimental streamline which closely approximated the false-roof profile. I n  
the second case, where detailed flow-field measurements did not extend through- 
out the separated region, the upstream boundary was defined by the false-roof 
profile and the streamline which appeared to stagnate on the false roof. The 
solution of the model equations was found to be (relatively) insensitive to the 
choice of this streamline. The resulting electrical analog solutions for both cases 
are shown in figure 6 and the model is seen to predict the overall features of the 
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FIGURE 8. Flow patterns for case 1 showing classification of critical points. (a )  Surface 
streamlines. ( b )  ‘ Separation surface’ streamlines. 1, ‘saddle’ in plane of floor, ‘node’ in 
plane of separation surface; 2 ,  ‘node’ in plane of floor, ‘ saddle’ in plane of side wall; 
3, ‘ centre ’ on side wall. 

flows reasonably well. In  both cases the separation bubble is somewhat larger 
with the separation point further upstream than is indicated by experiment. 
Thus, if the model were to be used and in an engineering application, a somewhat 
conservative result would be obtained. The departures of the model solution from 
experiment are no doubt due a t  least in part to the neglect of both entrainment 
and vorticity diffusion. This will affect the magnitude of the vorticity inside the 
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separation bubble, which, from a comparison of stream functions in the bubble 
for case 1 (see figures 6a,  b ) ,  may be seen to be somewhat less than that in the 
upstream layer. For more sophisticated models a more detailed study of the 
mechanisms controlling the value of this vorticity will be required. 

8. Discussion and conclusions 
The inviscid model for turbulent separation has been shown to be capable of 

predicting the gross properties of the flow fields for two extreme cases (a large 
bubble and a very small bubble). The authors believe that the model contains the 
major properties of a turbulent layer which are relevant in the separation 
process. The model is different from most previous proposals in that the inter- 
action between the boundary layer and the free stream and the elliptic nature of 
the governing equations are taken into account while the effects of the inner part 
of the boundary layer and viscosity are assumed to be negligible. 

The extension of the model to external flow problems involves the selection 
of a suitable (known) streamline as an upper boundary. Either this streamline 
must be far enough from the body to be unaffected by the separation or else some 
form of iterative process must be adopted. For flows which do not reattach, the 
extension of the model must await more detailed studies of wake flows to provide 
knowledge of the appropriate value of the vorticity in the separated region and 
downstream boundary conditions. This is especially true in the case of the aerofoil 
problem, for which the present knowledge of the conditions at  the trailing edge, 
where two shear layers interact, and in the ensuing wake is severely limited. 
However, the application of the model in such cases, making use of empirical 
assumptions or numerical experimentation, could provide much needed insight 
into areas which are at  present poorly understood. 

The authors wish to acknowledge the financial assistance of the Australian 
Research Grants Committee. Acknowledgements are also due to Dr K. C. Brown, 
Universit.y of Melbourne for many fruitful discussions. 
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